An Integrated Two-Stage Circumferential Slot Virtual Impactor (CSVI) for Concentrating Bioaerosols

Shishan Hu¹
Daniel E. LaCroix¹
Philip Poeschl²
Andrew R. McFarland¹

¹Aerosol Technology Laboratory ²TSI Inc
Texas A&M University 500 Cardigan Road
College Station, TX Shoreview, MN

Presented at:
Scientific Conference on Opacity and Aerosol Research
Battelle/RDECOM-ECBC
Aberdeen, MD
Roadmap

• CSV1 Description
• CSV1 System and function
• 2nd stage performance
• 1st stage development and performance
• Sheath flow in the transportation
• Performance of the entire system
• Summary
Fractionation Stages of the 100 L/min CSVI Unit

- 1st Stage
- 2nd Stage
Airflow in a CSVI Stage

Flow Inlet

Major Flow
~45%
Low-Inertial Particles

Exhaust Tube

Minor Flow, ~10%
High-Inertial Particles

Major Flow
~45%
Low-Inertial Particles

Flow Separation in Critical Zone

Axis
Integrated Two-Stage CSVI System

- Two CSVI stages in series.
- Inlet flow rate of 100 L/min, ideal concentration ratio of 100X.
- Cutpoint of 2.3 μm AD. Minor flow transmission efficiency >80% for 3 - 10 μm particles;
- Small pressure drop so power requirement will be low.
2nd Stage Performance

Minor Flow Transmission Efficiency

Particle Stokes Number, Stk
Results for 2nd Stage

- Transmission efficiency is over 90\% for particles size range of 3-20 μm AD.
- At a flow rate of 10 L/min, cutpoint is about 2.2 μm AD and the pressure drop is about 125 Pa (0.5 inches of water);
- Robust performance
 - Can be operated up to 40 L/min, cutpoint is about 1 μm AD;
 - Imbalance between major flow exhaust ports of as large as 10\% does not change the minor flow transmission efficiency.
Design of the 1st Stage

- Unstable flow in an earlier 1st stage; manifested by pulsating noise and low efficiency

- Stable flow in 2nd stage; high efficiency
Unstable Flow in Early Version of 1st Stage
Revised 1st Stage Design: Stable Flow but Losses in Wakes of Support Posts

- Wake flow downstream of posts;
- CFD analysis and solution: Move posts outward to eliminate problem.
Final 1st Stage Prototype Performance

![Graph showing the relationship between Particle Stokes Number, Stk, and Minor Flow Transmission Efficiency. The graph includes a line for Simulation and dots for Experiment data points.]
Results and Conclusions from Efforts on Modifying the 1st Stage

• Minor flow transmission efficiency is > 90% for particles size in the range of 3-11 \(\mu m \) AD.
• At a flow rate of 100 L/min, cutpoint is about 2.2 \(\mu m \) AD and the pressure drop is about 500 Pa (2.0 inches of water).
• CFD accommodated analysis of flow patterns and particle behavior in such a device.
• Upstream disturbances, such as wakes from posts, can propagate into the CSVI and degrade performance.
CSVI System with Sheath Flow

- Minor flow jet from 1st CSVI stage has a velocity of about 4 m/s;
- Inertia and gravity have same direction and cause loss of large particles on body of second stage;
- Without sheath flow, total transmission of 10 μm AD particle was only about 5%;
- Solution: sheath flow
CSVI System: Sheath Flow

- Sheath flow can form a stagnation region above the cone and displace the boundary layer;
- Sheath flow must be properly introduced.
CSVI System: Sheath Flow
Performance of the Complete 100 L/min System. With sheath flow, transmission efficiency for the integrated two-stage system is >80% for the size range of 2.5 to 10.5 µm AD. Cutpoint is about 2.3 µm AD.
Summary

• An integrated two-stage Circumferential Slot Virtual Impactor (CSVI) bioaerosol concentrator is described that has stable flow and performance.

• The two-stage system has a high transmission efficiency (>80%) for 2.5-10.5 μm AD particles; and, >90% for 3 – 8 μm AD particles.

• The system has a dynamic range of 35. Dynamic range is the ratio of the upper limit of Stokes number for which the transmission efficiency is at least 50% to the Stokes number of the cutpoint size.

• Sheath air flow, introduced at a fraction of 1% of the main flow, is effective in achieving suitable aerosol transmission from the 1st to the 2nd stage.
Acknowledgements

Funding for this research and development effort was provided by the U.S. Army Research, Development and Engineering Command/Edgewood Chemical Biological Center. Drs. Edward W. Stuebing and Jerold R. Bottiger are the technical administrators for RDECOM/ECBC. Design and fabrication of prototypes were carried out by TSI Inc. under the supervision of Mr. Darrick Niccum. We thank Drs. Stuebing and Bottiger, and Mr. Niccum for their help and contributions.